\(\int \frac {1}{(d+e x)^{7/2} (a d e+(c d^2+a e^2) x+c d e x^2)} \, dx\) [2008]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 186 \[ \int \frac {1}{(d+e x)^{7/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )} \, dx=\frac {2}{7 \left (c d^2-a e^2\right ) (d+e x)^{7/2}}+\frac {2 c d}{5 \left (c d^2-a e^2\right )^2 (d+e x)^{5/2}}+\frac {2 c^2 d^2}{3 \left (c d^2-a e^2\right )^3 (d+e x)^{3/2}}+\frac {2 c^3 d^3}{\left (c d^2-a e^2\right )^4 \sqrt {d+e x}}-\frac {2 c^{7/2} d^{7/2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {c d^2-a e^2}}\right )}{\left (c d^2-a e^2\right )^{9/2}} \]

[Out]

2/7/(-a*e^2+c*d^2)/(e*x+d)^(7/2)+2/5*c*d/(-a*e^2+c*d^2)^2/(e*x+d)^(5/2)+2/3*c^2*d^2/(-a*e^2+c*d^2)^3/(e*x+d)^(
3/2)-2*c^(7/2)*d^(7/2)*arctanh(c^(1/2)*d^(1/2)*(e*x+d)^(1/2)/(-a*e^2+c*d^2)^(1/2))/(-a*e^2+c*d^2)^(9/2)+2*c^3*
d^3/(-a*e^2+c*d^2)^4/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {640, 53, 65, 214} \[ \int \frac {1}{(d+e x)^{7/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )} \, dx=-\frac {2 c^{7/2} d^{7/2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {c d^2-a e^2}}\right )}{\left (c d^2-a e^2\right )^{9/2}}+\frac {2 c^3 d^3}{\sqrt {d+e x} \left (c d^2-a e^2\right )^4}+\frac {2 c^2 d^2}{3 (d+e x)^{3/2} \left (c d^2-a e^2\right )^3}+\frac {2 c d}{5 (d+e x)^{5/2} \left (c d^2-a e^2\right )^2}+\frac {2}{7 (d+e x)^{7/2} \left (c d^2-a e^2\right )} \]

[In]

Int[1/((d + e*x)^(7/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)),x]

[Out]

2/(7*(c*d^2 - a*e^2)*(d + e*x)^(7/2)) + (2*c*d)/(5*(c*d^2 - a*e^2)^2*(d + e*x)^(5/2)) + (2*c^2*d^2)/(3*(c*d^2
- a*e^2)^3*(d + e*x)^(3/2)) + (2*c^3*d^3)/((c*d^2 - a*e^2)^4*Sqrt[d + e*x]) - (2*c^(7/2)*d^(7/2)*ArcTanh[(Sqrt
[c]*Sqrt[d]*Sqrt[d + e*x])/Sqrt[c*d^2 - a*e^2]])/(c*d^2 - a*e^2)^(9/2)

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 640

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{(a e+c d x) (d+e x)^{9/2}} \, dx \\ & = \frac {2}{7 \left (c d^2-a e^2\right ) (d+e x)^{7/2}}+\frac {(c d) \int \frac {1}{(a e+c d x) (d+e x)^{7/2}} \, dx}{c d^2-a e^2} \\ & = \frac {2}{7 \left (c d^2-a e^2\right ) (d+e x)^{7/2}}+\frac {2 c d}{5 \left (c d^2-a e^2\right )^2 (d+e x)^{5/2}}+\frac {\left (c^2 d^2\right ) \int \frac {1}{(a e+c d x) (d+e x)^{5/2}} \, dx}{\left (c d^2-a e^2\right )^2} \\ & = \frac {2}{7 \left (c d^2-a e^2\right ) (d+e x)^{7/2}}+\frac {2 c d}{5 \left (c d^2-a e^2\right )^2 (d+e x)^{5/2}}+\frac {2 c^2 d^2}{3 \left (c d^2-a e^2\right )^3 (d+e x)^{3/2}}+\frac {\left (c^3 d^3\right ) \int \frac {1}{(a e+c d x) (d+e x)^{3/2}} \, dx}{\left (c d^2-a e^2\right )^3} \\ & = \frac {2}{7 \left (c d^2-a e^2\right ) (d+e x)^{7/2}}+\frac {2 c d}{5 \left (c d^2-a e^2\right )^2 (d+e x)^{5/2}}+\frac {2 c^2 d^2}{3 \left (c d^2-a e^2\right )^3 (d+e x)^{3/2}}+\frac {2 c^3 d^3}{\left (c d^2-a e^2\right )^4 \sqrt {d+e x}}+\frac {\left (c^4 d^4\right ) \int \frac {1}{(a e+c d x) \sqrt {d+e x}} \, dx}{\left (c d^2-a e^2\right )^4} \\ & = \frac {2}{7 \left (c d^2-a e^2\right ) (d+e x)^{7/2}}+\frac {2 c d}{5 \left (c d^2-a e^2\right )^2 (d+e x)^{5/2}}+\frac {2 c^2 d^2}{3 \left (c d^2-a e^2\right )^3 (d+e x)^{3/2}}+\frac {2 c^3 d^3}{\left (c d^2-a e^2\right )^4 \sqrt {d+e x}}+\frac {\left (2 c^4 d^4\right ) \text {Subst}\left (\int \frac {1}{-\frac {c d^2}{e}+a e+\frac {c d x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{e \left (c d^2-a e^2\right )^4} \\ & = \frac {2}{7 \left (c d^2-a e^2\right ) (d+e x)^{7/2}}+\frac {2 c d}{5 \left (c d^2-a e^2\right )^2 (d+e x)^{5/2}}+\frac {2 c^2 d^2}{3 \left (c d^2-a e^2\right )^3 (d+e x)^{3/2}}+\frac {2 c^3 d^3}{\left (c d^2-a e^2\right )^4 \sqrt {d+e x}}-\frac {2 c^{7/2} d^{7/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {c d^2-a e^2}}\right )}{\left (c d^2-a e^2\right )^{9/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.02 \[ \int \frac {1}{(d+e x)^{7/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )} \, dx=\frac {-30 a^3 e^6+6 a^2 c d e^4 (22 d+7 e x)-2 a c^2 d^2 e^2 \left (122 d^2+112 d e x+35 e^2 x^2\right )+2 c^3 d^3 \left (176 d^3+406 d^2 e x+350 d e^2 x^2+105 e^3 x^3\right )}{105 \left (c d^2-a e^2\right )^4 (d+e x)^{7/2}}+\frac {2 c^{7/2} d^{7/2} \arctan \left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {-c d^2+a e^2}}\right )}{\left (-c d^2+a e^2\right )^{9/2}} \]

[In]

Integrate[1/((d + e*x)^(7/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)),x]

[Out]

(-30*a^3*e^6 + 6*a^2*c*d*e^4*(22*d + 7*e*x) - 2*a*c^2*d^2*e^2*(122*d^2 + 112*d*e*x + 35*e^2*x^2) + 2*c^3*d^3*(
176*d^3 + 406*d^2*e*x + 350*d*e^2*x^2 + 105*e^3*x^3))/(105*(c*d^2 - a*e^2)^4*(d + e*x)^(7/2)) + (2*c^(7/2)*d^(
7/2)*ArcTan[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/Sqrt[-(c*d^2) + a*e^2]])/(-(c*d^2) + a*e^2)^(9/2)

Maple [A] (verified)

Time = 3.04 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.94

method result size
derivativedivides \(-\frac {2}{7 \left (e^{2} a -c \,d^{2}\right ) \left (e x +d \right )^{\frac {7}{2}}}-\frac {2 c^{2} d^{2}}{3 \left (e^{2} a -c \,d^{2}\right )^{3} \left (e x +d \right )^{\frac {3}{2}}}+\frac {2 c^{3} d^{3}}{\left (e^{2} a -c \,d^{2}\right )^{4} \sqrt {e x +d}}+\frac {2 c d}{5 \left (e^{2} a -c \,d^{2}\right )^{2} \left (e x +d \right )^{\frac {5}{2}}}+\frac {2 c^{4} d^{4} \arctan \left (\frac {c d \sqrt {e x +d}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}}\right )}{\left (e^{2} a -c \,d^{2}\right )^{4} \sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}}\) \(175\)
default \(-\frac {2}{7 \left (e^{2} a -c \,d^{2}\right ) \left (e x +d \right )^{\frac {7}{2}}}-\frac {2 c^{2} d^{2}}{3 \left (e^{2} a -c \,d^{2}\right )^{3} \left (e x +d \right )^{\frac {3}{2}}}+\frac {2 c^{3} d^{3}}{\left (e^{2} a -c \,d^{2}\right )^{4} \sqrt {e x +d}}+\frac {2 c d}{5 \left (e^{2} a -c \,d^{2}\right )^{2} \left (e x +d \right )^{\frac {5}{2}}}+\frac {2 c^{4} d^{4} \arctan \left (\frac {c d \sqrt {e x +d}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}}\right )}{\left (e^{2} a -c \,d^{2}\right )^{4} \sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}}\) \(175\)
pseudoelliptic \(-\frac {2 \left (-7 c^{4} d^{4} \arctan \left (\frac {c d \sqrt {e x +d}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}}\right ) \left (e x +d \right )^{\frac {7}{2}}+\left (\left (-7 x^{3} d^{3} e^{3}-\frac {70}{3} d^{4} e^{2} x^{2}-\frac {406}{15} d^{5} e x -\frac {176}{15} d^{6}\right ) c^{3}+\frac {122 e^{2} d^{2} a \left (\frac {35}{122} x^{2} e^{2}+\frac {56}{61} d e x +d^{2}\right ) c^{2}}{15}-\frac {22 e^{4} \left (\frac {7 e x}{22}+d \right ) d \,a^{2} c}{5}+e^{6} a^{3}\right ) \sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}\right )}{7 \left (e x +d \right )^{\frac {7}{2}} \sqrt {\left (e^{2} a -c \,d^{2}\right ) c d}\, \left (e^{2} a -c \,d^{2}\right )^{4}}\) \(195\)

[In]

int(1/(e*x+d)^(7/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x,method=_RETURNVERBOSE)

[Out]

-2/7/(a*e^2-c*d^2)/(e*x+d)^(7/2)-2/3/(a*e^2-c*d^2)^3*c^2*d^2/(e*x+d)^(3/2)+2/(a*e^2-c*d^2)^4*c^3*d^3/(e*x+d)^(
1/2)+2/5/(a*e^2-c*d^2)^2*c*d/(e*x+d)^(5/2)+2*c^4*d^4/(a*e^2-c*d^2)^4/((a*e^2-c*d^2)*c*d)^(1/2)*arctan(c*d*(e*x
+d)^(1/2)/((a*e^2-c*d^2)*c*d)^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 571 vs. \(2 (158) = 316\).

Time = 0.39 (sec) , antiderivative size = 1157, normalized size of antiderivative = 6.22 \[ \int \frac {1}{(d+e x)^{7/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )} \, dx=\left [\frac {105 \, {\left (c^{3} d^{3} e^{4} x^{4} + 4 \, c^{3} d^{4} e^{3} x^{3} + 6 \, c^{3} d^{5} e^{2} x^{2} + 4 \, c^{3} d^{6} e x + c^{3} d^{7}\right )} \sqrt {\frac {c d}{c d^{2} - a e^{2}}} \log \left (\frac {c d e x + 2 \, c d^{2} - a e^{2} - 2 \, {\left (c d^{2} - a e^{2}\right )} \sqrt {e x + d} \sqrt {\frac {c d}{c d^{2} - a e^{2}}}}{c d x + a e}\right ) + 2 \, {\left (105 \, c^{3} d^{3} e^{3} x^{3} + 176 \, c^{3} d^{6} - 122 \, a c^{2} d^{4} e^{2} + 66 \, a^{2} c d^{2} e^{4} - 15 \, a^{3} e^{6} + 35 \, {\left (10 \, c^{3} d^{4} e^{2} - a c^{2} d^{2} e^{4}\right )} x^{2} + 7 \, {\left (58 \, c^{3} d^{5} e - 16 \, a c^{2} d^{3} e^{3} + 3 \, a^{2} c d e^{5}\right )} x\right )} \sqrt {e x + d}}{105 \, {\left (c^{4} d^{12} - 4 \, a c^{3} d^{10} e^{2} + 6 \, a^{2} c^{2} d^{8} e^{4} - 4 \, a^{3} c d^{6} e^{6} + a^{4} d^{4} e^{8} + {\left (c^{4} d^{8} e^{4} - 4 \, a c^{3} d^{6} e^{6} + 6 \, a^{2} c^{2} d^{4} e^{8} - 4 \, a^{3} c d^{2} e^{10} + a^{4} e^{12}\right )} x^{4} + 4 \, {\left (c^{4} d^{9} e^{3} - 4 \, a c^{3} d^{7} e^{5} + 6 \, a^{2} c^{2} d^{5} e^{7} - 4 \, a^{3} c d^{3} e^{9} + a^{4} d e^{11}\right )} x^{3} + 6 \, {\left (c^{4} d^{10} e^{2} - 4 \, a c^{3} d^{8} e^{4} + 6 \, a^{2} c^{2} d^{6} e^{6} - 4 \, a^{3} c d^{4} e^{8} + a^{4} d^{2} e^{10}\right )} x^{2} + 4 \, {\left (c^{4} d^{11} e - 4 \, a c^{3} d^{9} e^{3} + 6 \, a^{2} c^{2} d^{7} e^{5} - 4 \, a^{3} c d^{5} e^{7} + a^{4} d^{3} e^{9}\right )} x\right )}}, -\frac {2 \, {\left (105 \, {\left (c^{3} d^{3} e^{4} x^{4} + 4 \, c^{3} d^{4} e^{3} x^{3} + 6 \, c^{3} d^{5} e^{2} x^{2} + 4 \, c^{3} d^{6} e x + c^{3} d^{7}\right )} \sqrt {-\frac {c d}{c d^{2} - a e^{2}}} \arctan \left (-\frac {{\left (c d^{2} - a e^{2}\right )} \sqrt {e x + d} \sqrt {-\frac {c d}{c d^{2} - a e^{2}}}}{c d e x + c d^{2}}\right ) - {\left (105 \, c^{3} d^{3} e^{3} x^{3} + 176 \, c^{3} d^{6} - 122 \, a c^{2} d^{4} e^{2} + 66 \, a^{2} c d^{2} e^{4} - 15 \, a^{3} e^{6} + 35 \, {\left (10 \, c^{3} d^{4} e^{2} - a c^{2} d^{2} e^{4}\right )} x^{2} + 7 \, {\left (58 \, c^{3} d^{5} e - 16 \, a c^{2} d^{3} e^{3} + 3 \, a^{2} c d e^{5}\right )} x\right )} \sqrt {e x + d}\right )}}{105 \, {\left (c^{4} d^{12} - 4 \, a c^{3} d^{10} e^{2} + 6 \, a^{2} c^{2} d^{8} e^{4} - 4 \, a^{3} c d^{6} e^{6} + a^{4} d^{4} e^{8} + {\left (c^{4} d^{8} e^{4} - 4 \, a c^{3} d^{6} e^{6} + 6 \, a^{2} c^{2} d^{4} e^{8} - 4 \, a^{3} c d^{2} e^{10} + a^{4} e^{12}\right )} x^{4} + 4 \, {\left (c^{4} d^{9} e^{3} - 4 \, a c^{3} d^{7} e^{5} + 6 \, a^{2} c^{2} d^{5} e^{7} - 4 \, a^{3} c d^{3} e^{9} + a^{4} d e^{11}\right )} x^{3} + 6 \, {\left (c^{4} d^{10} e^{2} - 4 \, a c^{3} d^{8} e^{4} + 6 \, a^{2} c^{2} d^{6} e^{6} - 4 \, a^{3} c d^{4} e^{8} + a^{4} d^{2} e^{10}\right )} x^{2} + 4 \, {\left (c^{4} d^{11} e - 4 \, a c^{3} d^{9} e^{3} + 6 \, a^{2} c^{2} d^{7} e^{5} - 4 \, a^{3} c d^{5} e^{7} + a^{4} d^{3} e^{9}\right )} x\right )}}\right ] \]

[In]

integrate(1/(e*x+d)^(7/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="fricas")

[Out]

[1/105*(105*(c^3*d^3*e^4*x^4 + 4*c^3*d^4*e^3*x^3 + 6*c^3*d^5*e^2*x^2 + 4*c^3*d^6*e*x + c^3*d^7)*sqrt(c*d/(c*d^
2 - a*e^2))*log((c*d*e*x + 2*c*d^2 - a*e^2 - 2*(c*d^2 - a*e^2)*sqrt(e*x + d)*sqrt(c*d/(c*d^2 - a*e^2)))/(c*d*x
 + a*e)) + 2*(105*c^3*d^3*e^3*x^3 + 176*c^3*d^6 - 122*a*c^2*d^4*e^2 + 66*a^2*c*d^2*e^4 - 15*a^3*e^6 + 35*(10*c
^3*d^4*e^2 - a*c^2*d^2*e^4)*x^2 + 7*(58*c^3*d^5*e - 16*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*x)*sqrt(e*x + d))/(c^4*d
^12 - 4*a*c^3*d^10*e^2 + 6*a^2*c^2*d^8*e^4 - 4*a^3*c*d^6*e^6 + a^4*d^4*e^8 + (c^4*d^8*e^4 - 4*a*c^3*d^6*e^6 +
6*a^2*c^2*d^4*e^8 - 4*a^3*c*d^2*e^10 + a^4*e^12)*x^4 + 4*(c^4*d^9*e^3 - 4*a*c^3*d^7*e^5 + 6*a^2*c^2*d^5*e^7 -
4*a^3*c*d^3*e^9 + a^4*d*e^11)*x^3 + 6*(c^4*d^10*e^2 - 4*a*c^3*d^8*e^4 + 6*a^2*c^2*d^6*e^6 - 4*a^3*c*d^4*e^8 +
a^4*d^2*e^10)*x^2 + 4*(c^4*d^11*e - 4*a*c^3*d^9*e^3 + 6*a^2*c^2*d^7*e^5 - 4*a^3*c*d^5*e^7 + a^4*d^3*e^9)*x), -
2/105*(105*(c^3*d^3*e^4*x^4 + 4*c^3*d^4*e^3*x^3 + 6*c^3*d^5*e^2*x^2 + 4*c^3*d^6*e*x + c^3*d^7)*sqrt(-c*d/(c*d^
2 - a*e^2))*arctan(-(c*d^2 - a*e^2)*sqrt(e*x + d)*sqrt(-c*d/(c*d^2 - a*e^2))/(c*d*e*x + c*d^2)) - (105*c^3*d^3
*e^3*x^3 + 176*c^3*d^6 - 122*a*c^2*d^4*e^2 + 66*a^2*c*d^2*e^4 - 15*a^3*e^6 + 35*(10*c^3*d^4*e^2 - a*c^2*d^2*e^
4)*x^2 + 7*(58*c^3*d^5*e - 16*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5)*x)*sqrt(e*x + d))/(c^4*d^12 - 4*a*c^3*d^10*e^2 +
6*a^2*c^2*d^8*e^4 - 4*a^3*c*d^6*e^6 + a^4*d^4*e^8 + (c^4*d^8*e^4 - 4*a*c^3*d^6*e^6 + 6*a^2*c^2*d^4*e^8 - 4*a^3
*c*d^2*e^10 + a^4*e^12)*x^4 + 4*(c^4*d^9*e^3 - 4*a*c^3*d^7*e^5 + 6*a^2*c^2*d^5*e^7 - 4*a^3*c*d^3*e^9 + a^4*d*e
^11)*x^3 + 6*(c^4*d^10*e^2 - 4*a*c^3*d^8*e^4 + 6*a^2*c^2*d^6*e^6 - 4*a^3*c*d^4*e^8 + a^4*d^2*e^10)*x^2 + 4*(c^
4*d^11*e - 4*a*c^3*d^9*e^3 + 6*a^2*c^2*d^7*e^5 - 4*a^3*c*d^5*e^7 + a^4*d^3*e^9)*x)]

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x)^{7/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )} \, dx=\text {Timed out} \]

[In]

integrate(1/(e*x+d)**(7/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2),x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(d+e x)^{7/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(1/(e*x+d)^(7/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?`
 for more de

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 310, normalized size of antiderivative = 1.67 \[ \int \frac {1}{(d+e x)^{7/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )} \, dx=\frac {2 \, c^{4} d^{4} \arctan \left (\frac {\sqrt {e x + d} c d}{\sqrt {-c^{2} d^{3} + a c d e^{2}}}\right )}{{\left (c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}\right )} \sqrt {-c^{2} d^{3} + a c d e^{2}}} + \frac {2 \, {\left (105 \, {\left (e x + d\right )}^{3} c^{3} d^{3} + 35 \, {\left (e x + d\right )}^{2} c^{3} d^{4} + 21 \, {\left (e x + d\right )} c^{3} d^{5} + 15 \, c^{3} d^{6} - 35 \, {\left (e x + d\right )}^{2} a c^{2} d^{2} e^{2} - 42 \, {\left (e x + d\right )} a c^{2} d^{3} e^{2} - 45 \, a c^{2} d^{4} e^{2} + 21 \, {\left (e x + d\right )} a^{2} c d e^{4} + 45 \, a^{2} c d^{2} e^{4} - 15 \, a^{3} e^{6}\right )}}{105 \, {\left (c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}\right )} {\left (e x + d\right )}^{\frac {7}{2}}} \]

[In]

integrate(1/(e*x+d)^(7/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="giac")

[Out]

2*c^4*d^4*arctan(sqrt(e*x + d)*c*d/sqrt(-c^2*d^3 + a*c*d*e^2))/((c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4
 - 4*a^3*c*d^2*e^6 + a^4*e^8)*sqrt(-c^2*d^3 + a*c*d*e^2)) + 2/105*(105*(e*x + d)^3*c^3*d^3 + 35*(e*x + d)^2*c^
3*d^4 + 21*(e*x + d)*c^3*d^5 + 15*c^3*d^6 - 35*(e*x + d)^2*a*c^2*d^2*e^2 - 42*(e*x + d)*a*c^2*d^3*e^2 - 45*a*c
^2*d^4*e^2 + 21*(e*x + d)*a^2*c*d*e^4 + 45*a^2*c*d^2*e^4 - 15*a^3*e^6)/((c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2
*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8)*(e*x + d)^(7/2))

Mupad [B] (verification not implemented)

Time = 10.13 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.15 \[ \int \frac {1}{(d+e x)^{7/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )} \, dx=\frac {2\,c^{7/2}\,d^{7/2}\,\mathrm {atan}\left (\frac {\sqrt {c}\,\sqrt {d}\,\sqrt {d+e\,x}\,\left (a^4\,e^8-4\,a^3\,c\,d^2\,e^6+6\,a^2\,c^2\,d^4\,e^4-4\,a\,c^3\,d^6\,e^2+c^4\,d^8\right )}{{\left (a\,e^2-c\,d^2\right )}^{9/2}}\right )}{{\left (a\,e^2-c\,d^2\right )}^{9/2}}-\frac {\frac {2}{7\,\left (a\,e^2-c\,d^2\right )}+\frac {2\,c^2\,d^2\,{\left (d+e\,x\right )}^2}{3\,{\left (a\,e^2-c\,d^2\right )}^3}-\frac {2\,c^3\,d^3\,{\left (d+e\,x\right )}^3}{{\left (a\,e^2-c\,d^2\right )}^4}-\frac {2\,c\,d\,\left (d+e\,x\right )}{5\,{\left (a\,e^2-c\,d^2\right )}^2}}{{\left (d+e\,x\right )}^{7/2}} \]

[In]

int(1/((d + e*x)^(7/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)),x)

[Out]

(2*c^(7/2)*d^(7/2)*atan((c^(1/2)*d^(1/2)*(d + e*x)^(1/2)*(a^4*e^8 + c^4*d^8 - 4*a*c^3*d^6*e^2 - 4*a^3*c*d^2*e^
6 + 6*a^2*c^2*d^4*e^4))/(a*e^2 - c*d^2)^(9/2)))/(a*e^2 - c*d^2)^(9/2) - (2/(7*(a*e^2 - c*d^2)) + (2*c^2*d^2*(d
 + e*x)^2)/(3*(a*e^2 - c*d^2)^3) - (2*c^3*d^3*(d + e*x)^3)/(a*e^2 - c*d^2)^4 - (2*c*d*(d + e*x))/(5*(a*e^2 - c
*d^2)^2))/(d + e*x)^(7/2)